

Managing Energy Use and Cost with Integrated Metering

Regional Municipality of Durham

October 29, 2015

Joe Green P.Eng, CEM

Overview

- Duffin Creek WPCP
 - Jointly owned by York and Durham Regions
- Capacity of 600,000 m3/day
- Built in 3 stages 1979, 1990, 2011
- Refurbishment and expansion projects on-going

Electrical Summary

- Two substations, two bills combined demand of 7-10 MW
- Total 2014 electricity use 65 million kWh
- Sub 1- Class A
- Sub 2 Class B
- Supplied by Veridian

Power Monitoring

- ION 6.0 system
- Over 90 meters installed
- Budgeted for upgrade to PME in 2016

Daily Consumption

Typical profile – about 1 MW difference from peak to trough. Follows wastewater flow pattern

Monthly Consumption

Seasonal loading? – not really. Very consistent overall

How Do We Use It?

EMP Objectives

- Determine current performance benchmarks
- Identify short and long term opportunities in each area
- Quantify savings opportunities and costs/paybacks

EMP examples:

- Process optimization
 - Aeration, influent pumping/effluent pumping/RAS/WAS/Dewat, etc
 - Power monitoring system upgrades
- Lighting –LED retrofits, automatic controls
- HVAC Auditing and optimizing building HVAC

Value Added by Power Monitoring system

- 1. Determine current performance benchmarks for both energy and demand, provides excellent usage data to help quantify opportunities for energy efficiency measures (EEMs)
- 2. Provides real time feedback to Operations related to energy use
- 3. Simplifies measurement and verification (M&V) process for both incented and non-incented EEMs
- 4. Can be used as a tool for troubleshooting power quality or equipment reliability issues

Value Added by Power Monitoring system

- 5. Provides real time load data which can be used for peak load and coincident peak management
- 6. Allows for energy cost analysis by unit process. This facilitates cost splitting with partners
- 7. Helps to fulfill reporting requirements
 - a) Municipalities have certain requirements under 397/11 Green Energy Act
 - b) Requires accurate reporting of energy use and GHG emissions

M&V Example

- As part of the facility Energy Management Plan, the performance of one of the pump stations was evaluated. Avg demand of 400-800 kW.
- Using the energy data collected by the energy monitoring system, testing was done to determine the effect of set point changes on energy use
- Statistical analysis of energy use data before and after the changes was used to normalize consumption to account for daily flow fluctuations using RETScreen
- This analysis was used to confirm test results, and also build business case for further study and optimization. Significant incentive funding was secured from IESO for a detailed engineering study
- Study has now been completed, and EEM's identified and now under implementation to avoid approx <u>1,700</u> MWh per year in energy

M&V Example

Feb 13th Set points changed to move typical operating level up 1m

Daily kWh and Flow

SP changed Feb 13th

Energy use reduction is not really obvious

Demand kW

Set point Changed Feb 13th, noticeable change in demand, but difficult to quantify

1.100 1.050 1.000 950 900 ₹ 850 800 750 700 650 600 Ę ₹ ₹ Ę Ę Ę ₹ ₹ ₹ Ę Ę 8.01/2015 12:00:00 PM 31/01/2015 8:00:00 PM ą 09.02.2015 2.00.00 PM 3/02/2015 11:00:00 PM 22/02/2015 5:00:00 PM 03/03/2015 2:00:00 PM ą ≧ 21/03/2015 4:00 :00 AM 29,03,2015 10,00,00 PM ą 07.04/2015 4:00:00 PM ą ą 29/04/2015 1:00:00 PM 33052015 10:00.00 PM 2/05/2015 4/00/00 PM 25/03/2015 1:00:00 PM 6.04/2015 10/00/00 AV ₹ 23/01/2015 2:00:00 25,04/2015 4:00:00. 01/01/2015 12:00:00 05/01/2015 9:00:00 09/01/2015 6:00:00 401/2015 3:00:00 27/01/2015 11:00:00 05/02/2015 5:00:00 8/02/2015 8:00:00 27/02/2015 5:00:00 8.03.2015 12.00.00 2/03/2015 10:00:00 6.03/2015 7.00.00 03/04/2015 7:00:00 12/04/2015 1:00:00 20/04/2015 7:00:00 08/05/2015 7:00:00 17/05/2015 1:00:00

IPS Demand kW

Energy vs Flow Regression analysis performed on baseline data

RETScreen CUSUM savings

RETScreen M&V

Adjusted baseline projection created to quantify avoided savings

- The use of high frequency interval energy and demand data from our sub-metering allowed us to verify energy savings from subtle operating changes.
- We were then able to leverage these findings to secure substantial incentives for a detailed study which yielded significant energy savings.

Summary Peak Load Management

- Facility has implemented load shifting program to reduce Global Adjustment charges on Class A account
- Facility was able to predict and curtail load during all 5 coincident peaks during the summer of 2015
- The power monitoring system provided real time feedback on substation load which was used to optimize the facility response
- Facility realized over 1.4 MW average load reduction during each peak. Global Adjustment savings estimated at \$400K-\$600K for 2016-2017 period.

Questions?

Joe Green, P.Eng, CEM joseph.green@durham.ca (289) 928-4578